import numpy as np
from scipy.special import erf
def Nfcn(x):
return 0.5 * (1.0 + erf(x / np.sqrt(2)))
def calcMJDOptionPrice(cp, S, K, T, sigma, r, q, lmbda, a, b, n):
# Meshgrid for strike price and time to maturity
K, T = np.meshgrid(K, T)
u, v = K.shape
# Repeat arrays to match dimensions
K = np.repeat(K[:, :, np.newaxis], n, axis=2)
T = np.repeat(T[:, :, np.newaxis], n, axis=2)
sigma = np.repeat(sigma[:, np.newaxis, np.newaxis], v, axis=1)
sigma = np.repeat(sigma[:, :, :, np.newaxis], n, axis=3)
S = np.repeat(S[:, np.newaxis, np.newaxis], v, axis=1)
S = np.repeat(S[:, :, :, np.newaxis], n, axis=3)
# Generate sequence of event counts
n_values = np.arange(n)
n_values = np.repeat(n_values[np.newaxis, np.newaxis, :], u, axis=0)
n_values = np.repeat(n_values[:, :, :, np.newaxis], v, axis=1)
# Compute factorial of event counts
factn = np.math.factorial(n_values)
# Calculate intermediate variables
m = a + 0.5 * b**2
lambda_prime = lmbda * np.exp(m)
r_n = r - lmbda * (np.exp(m) - 1) + n_values * (m) / T
sigma_n = np.sqrt(sigma**2 + (n_values * b**2) / T)
# Define functions for call and put prices
def dfcn(z, sigma, r):
return (1.0 / (sigma * np.sqrt(T))) * (np.log(S / K) + (r - q + z * 0.5 * (sigma**2)) * T)
def callfcn(sigma, r):
return ((1.0 / factn) * np.exp(-lambda_prime * T) * (lambda_prime * T)**n_values *
(np.exp(-q * T) * S * Nfcn(dfcn(1, sigma, r)) - K * np.exp(-r * T) * Nfcn(dfcn(-1, sigma, r))))
# Calculate option prices
P = np.sum(callfcn(sigma_n, r_n), axis=2)
if cp == -1:
P = P - S * np.exp(-q * T[:, :, 0]) + K[:, :, 0] * np.exp(-r * T[:, :, 0])
return P
# Example input parameters
cp = 1 # 1 for call, -1 for put
S = np.array([...]) # current asset price
K = np.array([...]) # strike price
T = np.array([...]) # time to maturity in years
sigma = np.array([...]) # volatility of diffusion
r = 0.03 # risk-free rate
q = 0 # dividend yield
lmbda = 0.01 # Poisson rate
a = -0.2 # jump mean
b = 0.5 # jump standard deviation
n = 50 # event count
# Calculate option prices
P = calcMJDOptionPrice(cp, S, K, T, sigma, r, q, lmbda, a, b, n)
import numpy as np
from scipy.special import erf
# Define inverse of standard normal cumulative distribution function
def Nfcn(x):
return 0.5 * (1.0 + erf(x / np.sqrt(2)))
# Main function to calculate Merton's Jump Diffusion model option prices
def calcMJDOptionPrice(cp, S, K, T, sigma, r, q, lmbda, a, b, n):
K, T = np.meshgrid(K, T)
u, v = K.shape
K = np.repeat(K[:, :, np.newaxis], n, axis=2)
T = np.repeat(T[:, :, np.newaxis], n, axis=2)
sigma = np.repeat(sigma[:, np.newaxis, np.newaxis], v, axis=1)
sigma = np.repeat(sigma[:, :, :, np.newaxis], n, axis=3)
S = np.repeat(S[:, np.newaxis, np.newaxis], v, axis=1)
S = np.repeat(S[:, :, :, np.newaxis], n, axis=3)
n_values = np.arange(n)
n_values = np.repeat(n_values[np.newaxis, np.newaxis, :], u, axis=0)
n_values = np.repeat(n_values[:, :, :, np.newaxis], v, axis=1)
factn = np.math.factorial(n_values)
m = a + 0.5 * b**2
lambda_prime = lmbda * np.exp(m)
r_n = r - lmbda * (np.exp(m) - 1) + n_values * (m) / T
sigma_n = np.sqrt(sigma**2 + (n_values * b**2) / T)
def dfcn(z, sigma, r):
return (1.0 / (sigma * np.sqrt(T))) * (np.log(S / K) + (r - q + z * 0.5 * (sigma**2)) * T)
def callfcn(sigma, r):
return ((1.0 / factn) * np.exp(-lambda_prime * T) * (lambda_prime * T)**n_values *
(np.exp(-q * T) * S * Nfcn(dfcn(1, sigma, r)) - K * np.exp(-r * T) * Nfcn(dfcn(-1, sigma, r))))
P = np.sum(callfcn(sigma_n, r_n), axis=2)
if cp == -1:
P = P - S * np.exp(-q * T[:, :, 0]) + K[:, :, 0] * np.exp(-r * T[:, :, 0])
return P
# Example usage:
# Define input parameters
cp = 1 # 1 for call, -1 for put
S = np.array([...]) # current asset price
K = np.array([...]) # strike price
T = np.array([...]) # time to maturity in years
sigma = np.array([...]) # volatility of diffusion
r = 0.03 # risk-free rate
q = 0 # dividend yield
lmbda = 0.01 # Poisson rate
a = -0.2 # jump mean
b = 0.5 # jump standard deviation
n = 50 # event count
# Calculate option prices
P = calcMJDOptionPrice(cp, S, K, T, sigma, r, q, lmbda, a, b, n)
PROS | CONS |
Incorporation of Jumps: By considering sudden, discontinuous changes in asset prices, the model accounts for unexpected events or volatility spikes that may not be captured by traditional continuous diffusion models like Black-Scholes. | Data Requirements: Estimating parameters for jump processes requires historical data on jumps, which may not always be readily available or reliable. |
Flexibility: The model allows for a more flexible representation of market behavior by incorporating both continuous diffusion processes and jump processes. This flexibility can better accommodate various market conditions and scenarios. | Sensitivity to Assumptions: The accuracy of the model's outputs can be influenced by the choice of parameters, the frequency of jumps assumed, and other model specifications, which may introduce uncertainties in its predictions. |
Accuracy: Merton’s Jump Diffusion Model can provide more accurate pricing for options and other derivatives compared to models that assume continuous diffusion only. | Computational Intensity: The inclusion of jump processes can increase the computational intensity of the model, especially when simulating asset price paths or solving complex option pricing equations. |
ITM VS OTM OPTIONS
The concept of an option being in-the-money (ITM) or out-of-the-money (OTM) depends... Read More
OPTIONS PROBABILITY CALCULATOR
This calculator specializes in determining the Probability of Profit (POP) for options trading strategies... Read More